京都大学若手人材海外派遣事業 ジョン万プログラム 研究者派遣プログラム

英文報告書

提出日:平成年月日

1. 渡航者 (日本語)				
氏	名	寺村謙太郎	採択年度	平成 24 年度
部	局	大学院工学研究科	電話	
職	名	准教授	メール	
研究課題名		人工光合成系の構築を目的とした新規層状複水酸化物の開発 Development of novel layered double hydroxides for artificial photosynthesis		
海外渡航期間		平成 25 年 2 月 16 日~ 平成 25 年 5 月 15 日		
渡航先 (英語表記)		国名:United Kingdom 大学等研究機関名:University of Oxford 研究室名等:Chemical Research Laboratory 受入研究者名:Prof. Dermot O'Hare		

2. 渡航の報告 (英文)

渡航先の研究環境、研究者との交流、研究発表の状況等、渡航中の滞在経験について英語(500~1000語)で記述して下さい。受入研究者と撮影した写真や研究発表で用いた図等について、可能な範囲で別添として提出して下さい。ページ数については増加してもかまいません。

この報告は、ジョン万プログラムの成果として、京都大学ホームページ(英文)などに掲載されることがあります。

Kentaro Teramura (KT) visited University of Oxford for 3 months. He belonged to the Prof. O'Hare's laboratory of Chemical Research Laboratory. His project was fabrication of novel layered double hydroxides (LDHs) for the photocatalytic conversion of carbon dioxide in water (so-called Artificial Photosynthesis). Prof. O'Hare and colleagues have a lot of special techniques to fabricate LDHs. Especially, it is the first case in the world that they fabricated nano-sized LDHs using surfactant templates. KT learned a couple of their techniques and synthesized Mg-Al and Ca-M (M = Al, Ga, In) LDHs in practice in his laboratory. As a result, he obtained the techniques for homogeneous and conventional coprecipitation, ion exchange in the interlayer, and synthesis of nanoplatelet LDHs. The synthesized samples were assigned using an X-ray diffractometer equipped in the Chemical Research Laboratory. Prof. O'Hare is due to send KT a number of LDH samples synthesized in his laboratory as candidates for active catalysts and photocatalysts. KT hope to continue a productive collaborative project with Prof. O'Hare in the future.